THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016
 Problem Set 5

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cc}
\cos x & \text { if } \quad x \geq 0 \\
1 & \text { if } \quad x<0
\end{array}\right.
$$

Is $f(x)$ differentiable at $x=0$?
2. Let $f(x)=x^{2 / 3}$. Show that $f(x)$ is not differentiable at $x=0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{ccc}
x^{3} & \text { if } & x \leq 1 \\
a x+b & \text { if } & x>1
\end{array}\right.
$$

If $f(x)$ differentiable at $x=1$, find the values of a and b.
4. Let a be a real number and $f(x)$ be a function defined by $f(x)=\lim _{n \rightarrow \infty} \frac{a\left(n^{x}-n^{-x}\right)}{n^{x}+n^{-x}}$.
(a) Find $f(0)$.
(b) Show that $f(x)$ is a constant for $x>0$ and $f(x)$ is another constant for $x<0$.
(c) If $f(x)$ is continuous at $x=0$, find the value(s) of a.
5. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions such that

- $g(x+y)=g(x) f(y)+f(x) g(y)$ for all $x, y \in \mathbb{R}$
- $f(0)=1, f^{\prime}(0)=0, g(0)=0$ and $g^{\prime}(0)=1$

Show that $g^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$.
(Remark: One may use the above conditions to give a definition of the cosine and sine function by defining them to be $f(x)$ and $g(x)$.)

